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Abstract
Since the linearized equation for a nearly integrable nonlinear equation is
essentially a linear equation, the direct perturbation theory is now developed
in the frame of Green’s function theory of linear differential equations. The
perturbed NLS equation with normal dispersion is treated as an example. Some
obscure points in previous works about this equation are clarified.

PACS numbers: 05.45.Yv, 42.65.Tg, 42.81.Dp

1. Introduction

There are mainly two kinds of perturbation theories for nearly integrable nonlinear equations
after the inverse scattering transform (IST) method was proposed. The first one bound with
IST was well established and a comprehensive survey has been done by Kivshar and Malomed
[1]. The second one is the direct perturbation theory first introduced by Gorschkov and his
colleagues [2, 3]. Since then, there has been a large amount of work on this method (see, e.g.
[4–8] and references therein), and it remains an open research area up to now [9–15].

The general steps to construct the direct perturbation theory are (1) deriving a linearized
equation of the perturbed nonlinear equation; (2) finding the solutions of the linearized
equation; (3) introducing the adjoint solutions; (4) deriving orthogonality relation of these two
kinds of solutions; (5) constructing and proving the completeness relation of these solutions.
Kaup found that the solutions of linearized equation of the nonlinear Schrödinger equation
(NLS equation) are squared Jost solutions [16], and similar results were later obtained for
other nearly integrable equations. Their orthogonality relations were usually derived from
Wronskian with various forms. On the other hand, the completeness relations were commonly
derived from the generalized Marchenko equations, which is still the most difficult step for
the direct perturbation theory applied in different nonlinear equations (see, [13, 17, 18] for
Korteweg–de Vries (KdV), NLS and NLS+ equations, respectively).
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However, these strategies do not work well for the derivative NLS equation (DNLS
equation) with corrections because its Wronskian does not have usual properties and its
Marchenko equation is too complicated [19, 20]. As a result, we have to find another way
to derive the orthogonality and prove the completeness of basic solutions for the linearized
equation. Through the paper of Mann [9, 10], we noted that Seeger et al [21, 22] had
investigated the influence of weak perturbations on the kink solution of the sine-Gordon
equation. As the linearized equation of nearly integrable nonlinear equation is essentially a
linear equation, they tried to deal with it based upon Green’s function theory of linear equation.
As the IST method was not raised at that time, their results are not satisfactory. But it is a
very good idea to employ Green’s function theory to deal with the DNLS equation with some
corrections [23]. This way, the adjoint operator of the linearized operator is introduced through
integration by parts and then its adjoint solutions are obtained. The orthogonality of the basic
solutions and its adjoint solutions is derived by (1+1)-dimensional Green’s theorem, and
then their completeness is directly shown by Green’s function theory. The whole procedure
is concise, easy to understand and distinct from other methods for formulating the direct
perturbation theory.

In this work, we take the NLS equation with non-vanishing boundary (NLS+ equation) as
an example to show the effects of this kind of direct perturbation theory, which can be compared
with what we have done previously [12, 13]. Following our approach, some obscure points
in previous works [11, 14] on this equation have been clarified, and a detailed discussion is
given at the end of this paper. Based upon Green’s function theory, it seems that a general and
systematic formalism for the direct perturbation theory should be presented.

2. Perturbed NLS+ equation

The NLS+ equation with corrections can be written as

ivt − vxx + 2(|v|2 − ρ2)v = iεp[v], (1)

where ε is a small positive parameter and p[v] is a functional of v. The aim of the perturbation
method is to obtain the solution of (1) to the first order of ε under the initial condition
v(x, 0) = u(x, 0), where u(x, 0) is the expression of the dark-soliton solution of the un-
perturbed NLS+ equation at t = 0.

It is known that the parameters characterizing the soliton shall be changed in the first-order
approximation as the corrections present, and it is rational to assume that [8]

v = ua + εq, (2)

where ua is the adiabatic solution (the same functional form as the exact soliton solution with
the parameters depending linearly on εt yet) and εq is the correction term. Substituting (2)
into (1), we get

iqt − qxx + 2(2|u|2 − ρ2)q + 2u2q̄ = iP [u], (3)

and P [u] is the effective source,

P [u] = p[u] − s[u], s[u] = d

dτ
u, (4)

in which τ = εt is the slow time in the multi-time expansion theory [24]. Since (3) is of the
order of ε and u on its left-hand side is an exact soliton solution, we can rewrite (3) and its
complex conjugate together in an operator form

L(u)q = iP , (5)
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where the linearized operator

L(u) =
(

i∂t − ∂xx + 2(2|u|2 − ρ2) 2u2

−2ū2 i∂t + ∂xx − 2(2|u|2 − ρ2)

)
, (6)

and q = (q q̄)T , P = (P P̄ )T , with the initial condition q(x, t = 0) = (0 0)T .
The eigen-solution of the operator L(u) with zero eigenvalue is called its basic solution.

Similarly to the work of Kaup [16], we can find

L(u)W = 0, W =
(

w2
1

w2
2

)
, (7)

where w = (w1 w2)
T is a full Jost function, i.e., a solution which satisfies both Lax equations.

3. Adjoint linearized operator

We now introduce the adjoint operator through integration by parts. Considering

gT Lf − fT LAg = divergence, (8)

where f and g are arrays with two components, the adjoint operator is obviously

LA(u) =
(−i∂t − ∂xx + 2(2|u|2 − ρ2) −2ū2

2u2 −i∂t + ∂xx − 2(2|u|2 − ρ2)

)
, (9)

and the divergence term is

i∂t (f1g1 + f2g2) − ∂x(f1xg1 − f1g1x − f2xg2 + f2g2x). (10)

Comparison of (6) and (9) gives

−σ2L(u)σ2 = LA(u), (11)

that indicates the basic solution of the adjoint operator

LA(u)WA = 0, WA = −iσ2W =
(

−w2
2

w2
1

)
, (12)

where σj , j = 1, 2, 3 are the Pauli matrices.

4. Choice of independent eigenfunctions

From the inverse scattering transform, the full Jost functions are

φ(x, t, ζ ) = h(t, ζ )φ(x, ζ ), φ̃(x, t, ζ ) = h(t, ζ )−1φ̃(x, ζ ), (13)

ψ̃(x, t, ζ ) = h(t, ζ )ψ̃(x, ζ ), ψ(x, t, ζ ) = h(t, ζ )−1ψ(x, ζ ), (14)

where

(φ(x, ζ )φ̃(x, ζ )) → ei 1
2 ασ3E(x, ζ ), as x → −∞, (15)

(ψ̃(x, ζ )ψ(x, ζ )) → E(x, ζ ), as x → ∞, (16)

and

h(t, ζ ) = ei2κλt , E(x, ζ ) =
(

1 −iρζ−1

iρζ−1 1

)
e−iκxσ3 , (17)
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where κ =
√

λ2 − ρ2 is a double-value function of the original spectrum parameter λ. To
avoid the complexity of Riemann surface, an auxiliary parameter ζ is introduced to make

κ = 1
2 (ζ − ρ2ζ−1), λ = 1

2 (ζ + ρ2ζ−1), (18)

single-valued functions of ζ [25].
As two values of ζ correspond to one value of κ or λ, we have to put a restriction to

the domain of ζ , for example, |ζ | > ρ. In this restriction, the independent Jost solutions
are ψ(x, ζ ) and ψ̃(x, ζ ) (or equally, φ(x, ζ ) and φ̃(x, ζ )) and the corresponding independent
squared Jost solutions are �(x, ζ ) and �̃(x, ζ ). Then the adjoint squared Jost solutions are
A(x, ζ ) and ̃A(x, ζ ).

5. (1 + 1)-dimensional Green’s theorem and orthogonality

Assuming that f = �(x, t, ζ ) in (8) is the basic solution to the linearized operator L(u), and
g = A(x, t, ζ ′) to the adjoint one LA(u), the lhs (left-hand side) of (8) should be equal to
zero, and the integration of the divergence term on its rhs (right-hand side) over (−L,L) for
x and (0, t) for t yields

i
∫ L

−L

dx
{
(f1g1 + f2g2)

∣∣t=t

t=0

} =
∫ t

0
dt

{
[f1xg1 − f1g1x − f2xg2 + f2g2x]

∣∣x=L

x=−L

}
. (19)

The time factor of the integrand on the lhs of this equation is e−i4(κλ−κ ′λ′)t
∣∣t=t

t=0, and
the one on the rhs is simply e−i4(κλ−κ ′λ′)t ; after the definite integration with t, it yields

1
−i4(κλ−κ ′λ′) e−i4(κλ−κ ′λ′)t

∣∣t=t

t=0. We eliminate the factor e−i4(κλ−κ ′λ′)t
∣∣t=t

t=0 from the two sides
and use f , g to denote the time-independent square Jost solutions in the following text; then
(19) reduces to

i
∫ L

−L

dx(f1g1 + f2g2) = 1

−i4(κλ − κ ′λ′)
[f1xg1 − f1g1x − f2xg2 + f2g2x]

∣∣x=L

x=−L
. (20)

As x = L → ∞,

f = �(x, ζ ) →
(−ρ2ζ−2

1

)
ei2κx

∣∣∣∣
x=L

, (21)

g = A(x, ζ ′) → a(ζ ′)2

(
ρ2ζ ′−2

1

)
e−i2κ ′x

∣∣∣∣
x=L

, (22)

the reflection term is absent because the un-perturbed state is pure-soliton state. Similarly, as
x = −L → −∞, we have

g = A(x, ζ ′) → e−iασ3

(
ρ2ζ ′−2

1

)
e−i2κ ′x

∣∣∣∣
x=−L

, (23)

f = �(x, ζ ) → a(ζ )2 eiασ3

(−ρ2ζ−2

1

)
ei2κx

∣∣∣∣
x=−L

. (24)

It is easy to see that fx = i2κf and gx = −i2κ ′g, therefore, as L → ∞, the numerator on the
rhs of (20) equals

−i2(κ + κ ′)(1 + ρ4ζ−2ζ ′−2)[a(ζ ′)2 ei2(κ−κ ′)L − a(ζ )2 e−i2(κ−κ ′)L]; (25)
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noting

2(κ + κ ′) = (ζ + ζ ′)(1 − ρ2ζ−1ζ ′−1), (26)

4(κλ − κ ′λ′) = (ζ 2 − ζ ′2)(1 + ρ4ζ−2ζ ′−2), (27)

equation (20) becomes∫ L

−L

dx(f1g1 + f2g2) = 1 − ρ2ζ−1ζ ′−1

i(ζ − ζ ′)
[a(ζ ′)2 ei2(κ−κ ′)L − a(ζ )2 ei2(κ ′−κ)L], (28)

or

i(ζ − ζ ′)
∫ L

−L

dx(f1g1 + f2g2) = (1 − ρ2ζ−1ζ ′−1)[a(ζ ′)2 ei2(κ−κ ′)L − a(ζ )2 ei2(κ ′−κ)L]. (29)

Since |ζ |, |ζ ′| > ρ, and 2(κ − κ ′) = (ζ − ζ ′)(1 + ρ2ζ−1ζ ′−1), we have

lim
L→∞

1

i(ζ − ζ ′)
ei2(κ−κ ′)L = πδ(ζ − ζ ′). (30)

Then taking L → ∞, (28) gives

〈(ζ ′)|�(ζ)〉 = 2πa(ζ )2(1 − ρ2ζ−2)δ(ζ − ζ ′), (31)

where

〈(ζ ′)|�(ζ)〉 = lim
L→∞

∫ L

−L

dx(f1g1 + f2g2). (32)

Similarly, we have

〈φ̃(ζ ′)|�̃(ζ )〉 = −2πã(ζ )2(1 − ρ2ζ−2)δ(ζ − ζ ′). (33)

6. Choice of ζ in the whole range {−∞, ∞}
It is well known that

ψ̃(x, ζ ) = iρ−1ηψ(x, η), φ̃(x, ζ ) = −iρ−1ηφ(x, η), η = ρ2ζ−1, (34)

which means that ψ̃(x, ζ ) with |ζ | > ρ is proportional to ψ(x, η) with |η| = ρ2|ζ |−1 < ρ.
We now show that (33) can be written in the form of (31). From (34) we have

�̃(x, ζ ) = −ρ−2η2�(x, η), ̃A(x, ζ ′) = −ρ−2η′2�(x, η′), (35)

where ζ = ρ2η−1, ζ ′ = ρ2η′−1 and then

δ(ζ − ζ ′) = δ(ρ2η−1 − ρ2η′−1) = ηη′

ρ2
δ(η − η′). (36)

Therefore, substituting (35) and (36) into (33), we get

〈(η′)|�(η)〉ρ−4η′2η2 = −2πa(η)2(1 − ρ−2η2)
ηη′

ρ2
δ(η − η′). (37)

Then by eliminating the same factors on two sides, we obtain

〈(η′)|�(η)〉 = 2πa(η)2(1 − ρ2η−2)δ(η − η′), (38)

which has the same form as (31), except |η|, |η′| < ρ. This means that (33) with |ζ |, |ζ ′| > ρ

is equivalent to (31) with |ζ |, |ζ ′| < ρ. Hence, ζ, ζ ′ in (31) can be extended to the whole
domain {−∞,∞} to let (31) contain (33). Then the orthogonality relations reduce to only
one, i.e. (31) with −∞ < ζ, ζ ′ < ∞. Accordingly, the unique independent Jost solution is
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ψ(x, ζ ); the independent squared Jost solution and adjoint squared solution are �(x, ζ ) and
A(x, ζ ), respectively.

After extending the argument ζ to the whole real axis, the squared Jost function �(x, ζ )

can be analytically continued to the upper half ζ -plane. Then from

L(u)�(x, t, ζ ) = 0, �(x, t, ζ ) =
(

ψ2
1 (x, t, ζ )

ψ2
2 (x, t, ζ )

)
, (39)

we have

L(u)�(x, t, ζn) = 0, (40)

L(u)�̇(x, t, ζn) = 0, �̇(x, t, ζn) = d

dζ
�(x, t, ζ )

∣∣∣∣
ζ=ζn

, (41)

where L(u) does not contain the parameter ζ , and ζn is one of the zeros of a(ζ ).
Applying operators d

dζ

∣∣
ζ=ζ ′=ζn

, d2

dζ 2

∣∣
ζ=ζ ′=ζn

and
(

d3

dζ 3 +3 d
dζ ′

d2

dζ 2

)∣∣
ζ=ζ ′=ζn

to (29) respectively,
we obtain

〈(ζm)|�(ζn)〉 = 0,

〈̇(ζm)|�(ζn)〉 = 〈(ζm)|�̇(ζn)〉 = iȧ(ζn)
2(1 − ρ2ζ−2

n )δmn,

〈̇(ζm)|�̇(ζn)〉 = iȧ(ζn)ä(ζn)(1 − ρ2ζ−2
n )δmn + i2ρ2ζ−3

n ȧ(ζn)
2δmn.

(42)

7. Green’s function

The linearized equation is essentially a linear equation, and we can choose the appropriate
method for it similar to that for linear equations. The rhs of linearized equation (5) is not zero,
then its Green function G(x, t; x ′, t ′) can be defined as

L(u)G = δ(x − x ′)δ(t − t ′), (43)

that is a 2 × 2 matrix since the basic solution has two components. The solution of (5) can be
written as

q = i
∫ ∞

0
dt ′

∫ ∞

−∞
dx ′G(x, t; x ′, t ′)P (x ′, t ′). (44)

Because of the causality condition, G should be zero for t ′ > t ; hence

G = G0(x, t; x ′, t ′)θ(t − t ′), (45)

where θ(τ ) represents the step function, i.e. θ(τ ) = 1 for τ > 0 and θ(τ ) = 0 for τ < 0.
Then (44) becomes

q = i
∫ t

0
dt ′

∫ ∞

−∞
dx ′G0(x, t; x ′, t ′)P (x ′, t ′), (46)

this solution fulfils the initial condition q = 0 for t = 0. Substituting (46) into (5), we have∫ ∞

−∞
dx ′G0(x, t; x ′, t)P (x ′, t) +

∫ t

0
dt ′

∫ ∞

−∞
dx ′L(u)G0(x, t; x ′, t ′)P (x ′, t ′) = P (x, t).

(47)

This equation is identically satisfied by assuming that G0 is a solution of the homogeneous
equation

L(u)G0(x, t; x ′, t ′) = 0, (48)
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and obeys the final condition

G0(x, t; x ′, t ′)|t=t ′ = δ(x − x ′), (49)

noting that these are all 2 × 2 matrices. The Green function G0 is completely determined by
the above two conditions.

8. Proof of the completeness

As we have seen in (39)–(41), the squared Jost function �(x, t, ζ ),�(x, t, ζn) and �̇(x, t, ζn)

are the basic solutions of the linearized equation, i.e. solutions of the homogeneous equation.
Moreover, from the properties of the reduction transformation, the state labelled with a tilde
is not needed. Therefore,

G0(x, t; x ′, t ′) =
∫

�

dζ�(x, t; ζ )A(x ′, t ′; ζ ) +
∑

n

�(x, t; ζn)B(x ′, t ′; ζn)

+
∑

n

�̇(x, t; ζn)C(x ′, t ′; ζn), (50)

where A,B,C are undetermined 1 × 2 matrices, and the integral path � is along the real axis
from −∞ to ∞, but goes over the origin in the upper ζ -plane. Then (49) becomes

δ(x − x ′) =
∫

�

dζ�(x, t; ζ )A(x ′, t; ζ ) +
∑

n

�(x, t; ζn)B(x ′, t; ζn)

+
∑

n

�̇(x, t; ζn)C(x ′, t; ζn). (51)

Multiplying by A(x, t; ζ ′)T from the left and integrating over x, (51) yields

A(x ′, t; ζ ′)T =
∫

�

dζM(t; ζ ′, ζ )A(x ′, t; ζ ), (52)

where

M(t; ζ ′, ζ ) =
∫ ∞

−∞
dx A(x, t; ζ )T �(x, t; ζ ) = 2πa(ζ )2(1 − ρ2ζ−2)δ(ζ − ζ ′), (53)

the summary terms vanish for the orthogonality (42), and the final expression of M comes
from (31). Then from (52) and (53), we have

A(x ′, t; ζ ) = 1

2πa(ζ )2(1 − ρ2ζ−2)
A(x ′, t; ζ )T . (54)

Similarly, multiplying (51) respectively by A(x, t; ζm)T and ̇A(x, t; ζm)T from the left and
integrating over x yields

A(x ′, t; ζm) =
∑

n

N(t; ζm, ζn)C(x ′, t; ζn), (55)

̇A(x ′, t; ζm) =
∑

n

N(t; ζm, ζn)B(x ′, t; ζn) +
∑

n

Q(t; ζm, ζn)C(x ′, t; ζn), (56)

where

N(t; ζm, ζn) =
∫ ∞

−∞
dx A(x, t; ζm)T �̇(x, t; ζn) = iȧ(ζn)

2
(
1 − ρ2ζ−2

n

)
δmn, (57)
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and

Q(t; ζm, ζn) =
∫ ∞

−∞
dx ̇A(x, t; ζm)T �̇(x, t; ζn)

= iȧ(ζn)ä(ζn)
(
1 − ρ2ζ−2

n

)
δmn + i2ȧ(ζn)

2ρ2ζ−3
n δmn. (58)

From the above four equations, we have

C(x ′, t; ζn) = −i
1

ȧ(ζn)2
(
1 − ρ2ζ−2

n

)A(x ′, t; ζn)
T , (59)

B(x ′, t; ζn) = i

(
ä(ζn)

ȧ(ζn)3(1 − ρ2ζ−2
n )

+
2ρ2ζ−3

n

ȧ(ζn)2
(
1 − ρ2ζ−2

n

)2

)
A(x ′, t; ζn)

T . (60)

Substituting the expressions of A,B and C into (47), we obtain the equation of completeness,

δ(x − x ′) = 1

2π

∫
�

dζ
1

a(ζ )2(1 − ρ2ζ−2)
�(x, ζ )A(x ′, ζ )T

− i
N∑

n=1

1

ȧ(ζn)2
(
1 − ρ2ζ−2

n

) (�̇(x, ζn)
A(x ′, ζn)

T + �(x, ζn)̇
A(x ′, ζn)

T )

+ i
N∑

n=1

(
ä(ζn)

ȧ(ζn)3
(
1 − ρ2ζ−2

n

) +
2ρ2ζ−3

n

ȧ(ζn)2
(
1 − ρ2ζ−2

n

)2

)
�(x, ζn)

A(x ′, ζn)
T .

(61)

Thus, the completeness relation is obtained; it is the same as the one in [13] which are proved
by the generalized Marchenko equation.

9. Discussion

The NLS+ equation has dark-soliton solutions under the condition of non-vanishing boundary
(u → ρ as x → ∞ and u → ρeiα as x = −∞) [25]. Since the perturbation theory based
upon IST requires fixed-boundary condition, it cannot be applied to nonlinear equations with
non-vanishing boundary which might be changed by corrections. As a result, the direct
perturbation theory is a more appropriate choice for this kind of problem. Pioneering work on
this direction is due to Konotop and Vekslerchik [11]. Unfortunately, their choice of the basic
solutions for the linearized equation did not consist of independent solutions, which resulted in
contradiction in determining the adiabatic variation of the parameters characterizing solutions.
To avoid this problem, they assumed that the boundary is not determined by corrections but
unvaried or only varied in a given manner. With the explicit expression of the single-dark-
soliton solution of NLS+ equation, the independent basic solutions were correctly chosen
later in [12], and then the orthogonality and completeness of the basic solutions were shown
obviously. The method was soon extended to the multi-dark-soliton case [13], in which the
orthogonal relations were derived by Wronskian determinant and the complete relations were
proved by the generalized Marchenko equation. Recently, the authors of [14, 15] re-examined
this problem, but they contain obvious mistakes that we should clarify as follows.

In the light-soliton case of NLS equation, only two of the two-component Jost functions
are independent because the compatible operator is a 2 × 2 matrix of first-order derivatives
and the other two depend on them through the monodromy matrix. But in the dark-soliton
case of NLS+ equation, two values of the affine parameter ζ correspond to only a single λ in
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the compatible pair. Therefore, we take |ζ | > ρ in order to guarantee one-to-one mapping.
Within this restriction, the independent two-component solutions can be chosen as ψ̃(x, t, ζ )

and ψ(x, t, ζ ). In the following theory, the range of ζ should be extended to the whole axis and
then continued to the complex plane. However, after we take −∞ < ζ < ∞, there remains
only one independent two-component solution, either ψ̃(x, t, ζ ) or ψ(x, t, ζ ). Detailed
consideration of these choices of the range of ζ has been given in sections 4 and 6. The paper
of Konotop and Vekslerchik [11] is a pioneering work in this direction. Unfortunately, they
chose two independent two-component solutions �(x, ζ ) and �̃(x, ζ ) in the whole domain of
−∞ < ζ < ∞. Recently in [14], the authors take �(x, ζ ) and (x, ζ ) as two independent
solutions of the linearized operator in whole ζ domain at the same time. Such a selection
obviously results in a serious contradiction, because the Jost solutions φ(x, ζ ) and ψ̃(x, ζ )

are proportional to each other in the case of reflectionlessness, i.e. φ(x, ζ ) = a(ζ )ψ̃(x, ζ );
the eigenfunction (x, ζ ) is just �̃(x, ζ ) except the factor a(ζ )2. Such mistake is almost the
same as that in [11].
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